Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.989
Filter
1.
Nat Commun ; 15(1): 3977, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730234

ABSTRACT

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Subject(s)
Aptamers, Nucleotide , Catalytic Domain , Hirudins , Thrombin , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Thrombin/chemistry , Hirudins/chemistry , Hirudins/pharmacology , Anticoagulants/pharmacology , Anticoagulants/chemistry , Factor Xa/metabolism , Factor Xa/chemistry , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/pharmacology , Animals , Binding Sites , Blood Coagulation/drug effects
2.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732912

ABSTRACT

The high affinity of the biotin-streptavidin interaction has made this non-covalent coupling an indispensable strategy for the immobilization and enrichment of biomolecular affinity reagents. However, the irreversible nature of the biotin-streptavidin bond renders surfaces functionalized using this strategy permanently modified and not amenable to regeneration strategies that could increase assay reusability and throughput. To increase the utility of biotinylated targets, we here introduce a method for reversibly immobilizing biotinylated thrombin-binding aptamers onto a Ni-nitrilotriacetic acid (Ni-NTA) sensor chip using 6xHis-tagged streptavidin as a regenerable capture ligand. This approach enabled the reproducible immobilization of aptamers and measurements of aptamer-protein interaction in a surface plasmon resonance assay. The immobilized aptamer surface was stable during five experiments over two days, despite the reversible attachment of 6xHis-streptavidin to the Ni-NTA surface. In addition, we demonstrate the reproducibility of this immobilization method and the affinity assays performed using it. Finally, we verify the specificity of the biotin tag-streptavidin interaction and assess the efficiency of a straightforward method to regenerate and reuse the surface. The method described here will allow researchers to leverage the versatility and stability of the biotin-streptavidin interaction while increasing throughput and improving assay efficiency.


Subject(s)
Aptamers, Nucleotide , Biotin , Nitrilotriacetic Acid , Streptavidin , Surface Plasmon Resonance , Streptavidin/chemistry , Biotin/chemistry , Aptamers, Nucleotide/chemistry , Nitrilotriacetic Acid/chemistry , Nitrilotriacetic Acid/analogs & derivatives , Biosensing Techniques/methods , Thrombin/chemistry , Organometallic Compounds
3.
Anal Methods ; 16(14): 1985-2001, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38502201

ABSTRACT

Thrombin, a proteolytic enzyme, plays an essential role in catalyzing many blood clotting reactions. Thrombin can act as a marker for some blood-related diseases, such as leukemia, thrombosis, Alzheimer's disease and liver disease. Therefore, its diagnosis is of great importance in the fields of biological and medical research. Biosensors containing sandwich-type structures have attracted much consideration owing to their superior features such as reproducible and stable responses with easy improvement in the sensitivity of detection. Sandwich-type platforms can be designed using a pair of receptors that are able to bind to diverse locations of the same target. Herein, we investigate recent advances in the progress and applications of thrombin aptasensors containing a sandwich-type structure, in which two thrombin-binding aptamers (TBAs) identify different parts of the thrombin molecule, leading to the formation of a sandwich structure and ultimately signal detection. We also discuss the pros and cons of these approaches and outline the most logical approach in each section.


Subject(s)
Biosensing Techniques , Thrombin , Thrombin/chemistry , Proteins
4.
J Biol Chem ; 300(4): 107131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432634

ABSTRACT

Many interactions involving a ligand and its molecular target are studied by rapid kinetics using a stopped-flow apparatus. Information obtained from these studies is often limited to a single, saturable relaxation that is insufficient to resolve all independent rate constants even for a two-step mechanism of binding obeying induced fit (IF) or conformational selection (CS). We introduce a simple method of general applicability where this limitation is overcome. The method accurately reproduces the rate constants for ligand binding to the serine protease thrombin determined independently from the analysis of multiple relaxations. Application to the inactive zymogen precursor of thrombin, prethrombin-2, resolves all rate constants for a binding mechanism of IF or CS from a single, saturable relaxation. Comparison with thrombin shows that the prethrombin-2 to thrombin conversion enhances ligand binding to the active site not by improving accessibility through the value of kon but by reducing the rate of dissociation koff. The conclusion holds regardless of whether binding is interpreted in terms of IF or CS and has general relevance for the mechanism of zymogen activation of serine proteases. The method also provides a simple test of the validity of IF and CS and indicates when more complex mechanisms of binding should be considered.


Subject(s)
Biochemistry , Kinetics , Ligands , Enzyme Precursors/metabolism , Enzyme Precursors/chemistry , Protein Binding , Protein Conformation , Prothrombin/metabolism , Prothrombin/chemistry , Thrombin/metabolism , Thrombin/chemistry , Biochemistry/methods , Serine Proteases/metabolism , Catalytic Domain
5.
J Thromb Haemost ; 22(5): 1336-1346, 2024 May.
Article in English | MEDLINE | ID: mdl-38242207

ABSTRACT

BACKGROUND: Factor (F)XI can be activated by proteases, including thrombin and FXIIa. The interactions of these enzymes with FXI are transient in nature and therefore difficult to study. OBJECTIVES: To identify the binding interface between thrombin and FXI and understand the dynamics underlying FXI activation. METHODS: Crosslinking mass spectrometry was used to localize the binding interface of thrombin on FXI. Molecular dynamics simulations were applied to investigate conformational changes enabling thrombin-mediated FXI activation after binding. The proposed trajectory of activation was examined with nanobody 1C10, which was previously shown to inhibit thrombin-mediated activation of FXI. RESULTS: We identified a binding interface of thrombin located on the light chain of FXI involving residue Pro520. After this initial interaction, FXI undergoes conformational changes driven by binding of thrombin to the apple 1 domain in a secondary step to allow migration toward the FXI cleavage site. The 1C10 binding site on the apple 1 domain supports this proposed trajectory of thrombin. We validated the results with known mutation sites on FXI. As Pro520 is conserved in prekallikrein (PK), we hypothesized and showed that thrombin can bind PK, even though it cannot activate PK. CONCLUSION: Our investigations show that the activation of FXI is a multistaged procedure. Thrombin first binds to Pro520 in FXI; thereafter, it migrates toward the activation site by engaging the apple 1 domain. This detailed analysis of the interaction between thrombin and FXI paves a way for future interventions for bleeding or thrombosis.


Subject(s)
Factor XI , Molecular Dynamics Simulation , Protein Binding , Thrombin , Thrombin/metabolism , Thrombin/chemistry , Humans , Factor XI/metabolism , Factor XI/chemistry , Binding Sites , Protein Multimerization , Mutation , Protein Conformation , Blood Coagulation , Prekallikrein/metabolism , Prekallikrein/chemistry , Protein Subunits/metabolism , Enzyme Activation , Factor XIa/metabolism , Factor XIa/chemistry
6.
Bioelectrochemistry ; 157: 108635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38185025

ABSTRACT

In this work, a novel sandwich-type electrochemical aptasensor based on the dual signal amplification strategy of hemin/G-quadruplex and AuNPs-MoS2 was designed and constructed, which realized the highly sensitive and specific detection of thrombin (TB). In this aptasensor, the 15-mer TB-binding aptamer (TBA-1) modified with thiol group was immobilized on the surface of AuNPs modified glassy carbon electrode (AuNPs/GCE) as capturing elements. Another thiol-modified 29-mer TB-binding aptamer (TBA-2) sequence containing G-quadruplex structure for hemin immobilization was designed. The formed hemin/G-quadruplex/TBA-2 sequence was further combined to the AuNPs decorated flower-like molybdenum disulfide (AuNPs-MoS2) composite surface via Au-S bonds, acting the role of reporter probe. In presence of the target TB, the sandwich-type electrochemical aptamer detection system could be formed properly. With the assistance of the dual signal amplification of AuNPs-MoS2 and hemin/G-quadruplex toward H2O2 reduction, the sandwich-type electrochemical aptasensor was successfully constructed for sensitive detection of TB. The results demonstrate that the fabricated aptasensor displays a wide linear range of 1.0 × 10-6 âˆ¼ 10.0 nM with a low detection limit of 0.34 fM. This proposed aptasensor shows potential application in the detection of TB content in real biological samples with high sensitivity, selectivity, and reliability.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Hemin/chemistry , Thrombin/chemistry , Gold/chemistry , Molybdenum/chemistry , Reproducibility of Results , Hydrogen Peroxide , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Sulfhydryl Compounds , Electrochemical Techniques/methods , Limit of Detection
7.
Anal Chim Acta ; 1287: 342106, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182384

ABSTRACT

BACKGROUND: Thrombin is a serine protease and hemostasis regulator with multiple functions and recognized as an important biomarker for diseases, and sensitive detection of thrombin is of significance for clinical diagnostics and disease monitoring. Recently, the target-triggered nonspecific single-stranded deoxyribonuclease activity of CRISPR/Cas system is discovered, making it become a powerful tool in assay developments due to the ease of signal amplification. In the short period of development, many CRISPR based nucleic acid detection methods have already played a critical role in clinical diagnostics. However, the application of CRISPR/Cas system for protein biomarkers remains limited. RESULTS: Here we describe a CRISPR/Cas12a linked sandwich aptamer assay for detection of thrombin, which was based on the formation of a sandwich complex of target by using a capture aptamer or antibody coated on the microplate and a well-designed detection DNA strand. The detection DNA strand contained an anti-thrombin aptamer and an active DNA of Cas12a, thus the sandwich complex was labeled with the active DNA. The active DNA triggered activity of Cas12a in indiscriminately cleaving fluorophore and quencher labeled DNA reporters, causing significant fluorescence increase. Our method enabled sensitive detection of thrombin down to 10 pM, and it showed high selectivity for thrombin. The assay exhibited good performance in diluted serum samples, demonstrating the applicability for thrombin analysis in the real media. SIGNIFICANCE: This assay combines the merits of high affinity of aptamer, trans-cleavage activity of Cas12a, high selectivity of sandwich format analysis, and high-throughput detection of microplate assay, and it shows promise in applications.


Subject(s)
Aptamers, Nucleotide , CRISPR-Cas Systems , Thrombin , Antibodies , Biological Assay , DNA , Thrombin/chemistry , Aptamers, Nucleotide/chemistry
8.
Nat Chem Biol ; 20(5): 624-633, 2024 May.
Article in English | MEDLINE | ID: mdl-38155304

ABSTRACT

Cyclic peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, as with biological drugs, most cyclic peptides cannot be applied orally because they are rapidly digested and/or display low absorption in the gastrointestinal tract, hampering their development as therapeutics. In this study, we developed a combinatorial synthesis and screening approach based on sequential cyclization and one-pot peptide acylation and screening, with the possibility of simultaneously interrogating activity and permeability. In a proof of concept, we synthesized a library of 8,448 cyclic peptides and screened them against the disease target thrombin. Our workflow allowed multiple iterative cycles of library synthesis and yielded cyclic peptides with nanomolar affinities, high stabilities and an oral bioavailability (%F) as high as 18% in rats. This method for generating orally available peptides is general and provides a promising push toward unlocking the full potential of peptides as therapeutics.


Subject(s)
Biological Availability , Peptides, Cyclic , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/pharmacology , Administration, Oral , Animals , Rats , Humans , Cyclization , Peptide Library , Thrombin/metabolism , Thrombin/chemistry , Male , Combinatorial Chemistry Techniques , Acylation
9.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068988

ABSTRACT

For coagulation to be initiated, anticoagulant glycosaminoglycans (GAGs) such as heparins need to be neutralised to allow fibrin clot formation. Platelet activation triggers the release of several proteins that bind GAGs, including histidine-rich glycoprotein (HRG), fibrinogen, and fibronectin. Zn2+ ions are also released and have been shown to enhance the binding of HRG to heparins of a high molecular weight (HMWH) but not to those of low molecular weight (LMWH). The effect of Zn2+ on fibrinogen and fibronectin binding to GAGs is unknown. Here, chromogenic assays were used to measure the anti-factor Xa and anti-thrombin activities of heparins of different molecular weights and to assess the effects of HRG, fibrinogen, fibronectin, and Zn2+. Surface plasmon resonance was also used to examine the influence of Zn2+ on the binding of fibrinogen to heparins of different molecular weights. Zn2+ had no effect on the neutralisation of anti-factor Xa (FXa) or anti-thrombin activities of heparin by fibronectin, whereas it enhanced the neutralisation of unfractionated heparin (UFH) and HMWH by both fibrinogen and HRG. Zn2+ also increased neutralisation of the anti-FXa activity of LMWH by fibrinogen but not HRG. SPR showed that Zn2+ increased fibrinogen binding to both UFH and LMWH in a concentration-dependent manner. The presented results reveal that an increase in Zn2+ concentration has differential effects upon anticoagulant GAG neutralisation by HRG and fibrinogen, with implications for modulating anti-coagulant activity in plasma.


Subject(s)
Hemostatics , Heparin , Anticoagulants , Fibrinogen/metabolism , Fibronectins , Glycosaminoglycans , Heparin/pharmacology , Heparin/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Thrombin/chemistry , Zinc/metabolism
10.
Protein Sci ; 32(12): e4825, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924304

ABSTRACT

Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 µM) and its potency was enhanced by 10-fold after Phe3 → ß-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 µM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.


Subject(s)
Hirudins , Thrombin , Hirudins/genetics , Hirudins/pharmacology , Hirudins/chemistry , Thrombin/chemistry , Thrombin/metabolism , Amino Acid Sequence , Peptides , Heme
11.
Bioconjug Chem ; 34(11): 2066-2076, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37857354

ABSTRACT

Interactions between DNA aptamers and protein targets hold promise for the development of pharmaceuticals and diagnostics. As such, the utilization of fluorescent nucleobase surrogates in studying aptamer-protein interactions is a powerful tool due to their ability to provide site-specific information through turn-on fluorescence. Unfortunately, previously described turn-on probes serving as nucleobase replacements have only been strongly disruptive to the affinity of aptamer-protein interactions. Herein, we present a modified TBA15 aptamer for thrombin containing a fluorescent surrogate that provides site-specific turn-on emission with low nanomolar affinity. The modification, referred to as AnBtz, was substituted at position T3 and provided strong turn-on emission (Irel ≈ 4) and brightness (ε·Φ > 20 000 cm-1 M-1) with an apparent dissociation constant (Kd) of 15 nM to afford a limit of detection (LOD) of 10 nM for thrombin in 20% human serum. The probe was selected through a modular "on-strand" synthesis process that utilized a 4-formyl-aniline (4FA) handle. Using this platform, we were able to enhance the affinity of the final aptamer conjugate by ∼30-fold in comparison with the initial conjugate design. Molecular dynamics simulations provide insight into the structural basis for this phenomenon and highlight the importance of targeting hydrophobic protein binding sites with fluorescent nucleobase surrogates to create new contacts with protein targets.


Subject(s)
Aptamers, Nucleotide , Humans , Aptamers, Nucleotide/chemistry , Thrombin/chemistry , Fluorescent Dyes/chemistry , Binding Sites , Protein Binding
12.
Anal Chem ; 95(44): 16160-16168, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37870982

ABSTRACT

The discovery of DNA aptamers that bind biomolecular targets has enabled significant innovations in biosensing. Aptamers form secondary structures that exhibit selective high-affinity interactions with their binding partners. The binding of its target by an aptamer is often accompanied by conformational changes, and sensing by aptamers often relies on these changes to provide readout signals from extrinsic labels to detect target association. Many biosensing applications involve aptamers immobilized to surfaces, but methods to characterize conformations of immobilized aptamers and their in situ response have been lacking. To address this challenge, we have developed a structurally informative Raman spectroscopy method to determine conformations of the 15-mer thrombin-binding aptamer (TBA) immobilized on porous silica surfaces. The TBA is of interest because its binding of α-thrombin depends on the aptamer forming an antiparallel G-quadruplex, which is thought to drive signal changes that allow thrombin-binding to be detected. However, specific metal cations also stabilize the G-quadruplex conformation of the aptamer, even in the absence of its protein target. To develop a deeper understanding of the conformational response of the TBA, we utilize Raman spectroscopy to quantify the effects of the metal cations, K+ (stabilizing) and Li+ (nonstabilizing), on G-quadruplex versus unfolded populations of the TBA. In K+ or Li+ solutions, we then detect the association of α-thrombin with the immobilized aptamer, which can be observed in Raman scattering from the bound protein. The results show that the association of α-thrombin in K+ solutions produces no detectable change in aptamer conformation, which is found in the G-quadruplex form both before and after binding its target. In Li+ solutions, however, where the TBA is unfolded prior to α-thrombin association, protein binding occurs with the formation of a G-quadruplex by the aptamer.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Aptamers, Nucleotide/chemistry , Thrombin/chemistry , Spectrum Analysis, Raman , Cations/chemistry
13.
ACS Chem Biol ; 18(9): 1976-1984, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37531184

ABSTRACT

Nucleic acid-based receptors, known as aptamers, are relatively fast to discover and manufacture but lack the diverse functional groups of protein receptors (e.g., antibodies). The binding properties of DNA aptamers can be enhanced by attaching abiotic functional groups; for example, aromatic groups such as naphthalene slow dissociation from proteins. Although the terminal alkyne is a π-electron-rich functional group that has been used in small molecule drugs to enhance binding to proteins through noncovalent interactions, it remains unexplored for enhancing DNA aptamer binding affinity. Here, we demonstrate the utility of the terminal alkyne for improving the binding of DNA to proteins. We prepared a library of 256 terminal-alkyne-bearing variants of HD22, a DNA aptamer that binds the protein thrombin with nanomolar affinity. After a one-step thrombin-binding selection, a high-affinity aptamer containing two alkynes was discovered, exhibiting 3.2-fold tighter thrombin binding than the corresponding unmodified sequence. The tighter binding was attributable to a slower rate of dissociation from thrombin (5.2-fold slower than HD22). Molecular dynamics simulations with enhanced sampling by Replica Exchange with Solute Tempering (REST2) suggest that the π-electron-rich alkyne interacts with an asparagine side chain N-H group on thrombin, forming a noncovalent interaction that stabilizes the aptamer-protein interface. Overall, this work represents the first case of terminal alkynes enhancing the binding properties of an aptamer and underscores the utility of the terminal alkyne as an atom economical π-electron-rich functional group to enhance binding affinity with minimal steric perturbation.


Subject(s)
Aptamers, Nucleotide , Humans , Protein Binding , Aptamers, Nucleotide/chemistry , Alkynes , Thrombin/chemistry , Thrombin/metabolism , Molecular Dynamics Simulation
14.
Nucleic Acids Res ; 51(16): 8880-8890, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37503836

ABSTRACT

Ligand/protein molecular recognition involves a dynamic process, whereby both partners require a degree of structural plasticity to regulate the binding/unbinding event. Here, we present the characterization of the interaction between a highly dynamic G-rich oligonucleotide, M08s-1, and its target protein, human α-thrombin. M08s-1 is the most active anticoagulant aptamer selected thus far. Circular dichroism and gel electrophoresis analyses indicate that both intramolecular and intermolecular G-quadruplex structures are populated in solution. The presence of thrombin stabilises the antiparallel intramolecular chair-like G-quadruplex conformation, that provides by far the main contribution to the biological activity of the aptamer. The crystal structure of the thrombin-oligonucleotide complex reveals that M08s-1 adopts a kinked structural organization formed by a G-quadruplex domain and a long duplex module, linked by a stretch of five purine bases. The quadruplex motif hooks the exosite I region of thrombin and the duplex region is folded towards the surface of the protein. This structural feature, which has never been observed in other anti-exosite I aptamers with a shorter duplex motif, hinders the approach of a protein substrate to the active site region and may well explain the significant increase in the anticoagulant activity of M08s-1 compared to the other anti-exosite I aptamers.


Subject(s)
Anticoagulants , Aptamers, Nucleotide , Thrombin , Humans , Anticoagulants/chemistry , Aptamers, Nucleotide/chemistry , Circular Dichroism , G-Quadruplexes , Guanine/chemistry , Thrombin/chemistry
15.
Biosens Bioelectron ; 237: 115527, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37480787

ABSTRACT

The microfluidic technology provides an ideal platform for in situ screening of enzyme inhibitors and activators from natural products. This work described a surface-modified ITO glass-PDMS hybrid microfluidic chip for evaluating thrombin interaction with its potential inhibitors by fluorescence imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). The fluorescence-labeled substrate was immobilized on a conductive ITO glass slide coated with gold nanoparticles/thiol-ß-cyclodextrin modified TiO2 nanowires (Au-ß-CD@TiO2 NWs) via Au-S bonds. A PDMS microchannel plate was placed on top of the modified ITO slide. The premixed solutions of thrombin and candidate thrombin inhibitors were infused into the microchannels to form a microreactor environment. The enzymatic reaction was rapidly monitored by fluorescence microscopy, and MALDI MS was used to validate and quantify the enzymatic hydrolysate of thrombin to determine the enzyme kinetic process and inhibitory activities of selected flavonoids. The fluorescence and MALDI MS results showed that luteolin, cynaroside, and baicalin have good thrombin inhibitory activity and their half-maximal inhibitory concentrations (IC50) were below 30 µM. The integration of fluorescence imaging and MALDI MSI for in situ monitoring and quantifying the enzymatic reaction in a microfluidic chip is capable of rapid and accurate screening of thrombin inhibitors from natural products.


Subject(s)
Biological Products , Biosensing Techniques , Metal Nanoparticles , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Microfluidics/methods , Thrombin/chemistry , Gold/chemistry , Biological Products/pharmacology , Anticoagulants
16.
J Chem Inf Model ; 63(12): 3705-3718, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37285464

ABSTRACT

Hydrogen bonds play a critical role in the folding and stability of proteins, such as proteins and nucleic acids, by providing strong and directional interactions. They help to maintain the secondary and 3D structure of proteins, and structural changes in these molecules often result from the formation or breaking of hydrogen bonds. To gain insights into these hydrogen bonding networks, we applied two machine learning models - a logistic regression model and a decision tree model - to study four variants of thrombin: wild-type, ΔK9, E8K, and R4A. Our results showed that both models have their unique advantages. The logistic regression model highlighted potential key residues (GLU295) in thrombin's allosteric pathways, while the decision tree model identified important hydrogen bonding motifs. This information can aid in understanding the mechanisms of folding in proteins and has potential applications in drug design and other therapies. The use of these two models highlights their usefulness in studying hydrogen bonding networks in proteins.


Subject(s)
Proteins , Thrombin , Thrombin/chemistry , Hydrogen Bonding , Proteins/chemistry , Machine Learning
17.
Chem Commun (Camb) ; 59(57): 8862-8865, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37377065

ABSTRACT

Thrombin-binding aptamer (TBA), which forms a G-quadruplex (G4) structure with anti-parallel topology, interacts with thrombin to inhibit its enzymatic activity. Here we show that the G4-topology-altering ligand L2H2-2M2EA-6LCO (6LCO) changes the anti-parallel topology of TBA G4 to the parallel topology, thereby abrogating the thrombin-inhibitory activity of TBA. This finding suggests that G4 ligands that alter topology may be promising drug candidates for diseases involving G4-binding proteins.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Thrombin/chemistry , Ligands , Aptamers, Nucleotide/chemistry
18.
Bioconjug Chem ; 34(7): 1198-1204, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37341722

ABSTRACT

Important efforts have been devoted toward the development of modified oligonucleotides capable of controlling the secondary structures of the G-quadruplex (G4). Herein, we introduce a photocleavable, lipidated construct of the well-known Thrombin Binding Aptamer (TBA) whose conformation can be dual-controlled by light and/or the ionic strength of the aqueous solution. This novel lipid-modified TBA oligonucleotide spontaneously self-assembles and switches from the conventional antiparallel aptameric fold at low ionic strength to the parallel, inactive conformation of the TBA oligonucleotide strands under physiologically relevant conditions. The latter parallel conformation can be readily and chemoselectively switched back to the antiparallel native aptamer conformation upon light irradiation. Our lipidated construct constitutes an original prodrug of the original TBA with properties that are prone to improving the pharmacodynamic profile of the unmodified TBA.


Subject(s)
Aptamers, Nucleotide , G-Quadruplexes , Prodrugs , Thrombin/chemistry , Prodrugs/pharmacology , Aptamers, Nucleotide/chemistry , Lipids
19.
Carbohydr Res ; 529: 108831, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209666

ABSTRACT

Thrombotic disorders are among the leading causes of deaths worldwide. Anticoagulants are frequently prescribed for their prevention and/or treatment. Current anticoagulants, which target either thrombin or factor Xa, are plagued with a number of drawbacks, the most important of which is the increased risk of internal bleeding. To develop better antithrombotic agents, the anticoagulant activity of cyclic glycosaminoglycan mimetics was evaluated. Human plasma clotting assays and enzyme inhibition assays were exploited to evaluate the anticoagulant activity of sulfated ß-cyclodextrin (SBCD) and its three analogs: sulfated α-cyclodextrin, ß-cyclodextrin, and methylated ß-cyclodextrin. In normal human plasma, SBCD selectively doubled the activated partial thromboplastin time (APTT) at ∼9 µg/mL, with no effect on prothrombin time (PT) at the same concentration. Likewise, SBCD doubled APTT at ∼9 µg/mL and at ∼8 µg/mL in antithrombin-deficient plasma and heparin cofactor II-deficient plasma, respectively. Interestingly, the three SBCD derivatives were inactive at the highest concentrations tested which highlighted the importance of the sulfate groups and the size of the molecule. Enzyme assays revealed that SBCD inhibits factor XIa (FXIa) with an IC50 value of ∼20 µg/mL and efficacy of near 100%. SBCD did not inhibit other related proteins including thrombin, factor IXa, factor Xa, factor XIIa, factor XIIIa, plasmin, chymotrypsin, or trypsin at the highest concentrations tested demonstrating a significant selectivity. In Michaelis-Menten kinetics, SBCD decreased the VMAX and increased the KM of FXIa hydrolysis of a tripeptide chromogenic substrate indicating a mixed inhibition mechanism. Together, it appears that SBCD is a potent and selective inhibitor of human FXIa with substantial anticoagulant activity in human plasma. Overall, this study introduces SBCD as a promising lead for further development as a safer anticoagulant.


Subject(s)
Factor Xa , Thrombin , Humans , Thrombin/chemistry , Glycosaminoglycans/pharmacology , Glycosaminoglycans/chemistry , Anticoagulants/pharmacology , Anticoagulants/chemistry
20.
Talanta ; 259: 124489, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37003182

ABSTRACT

To design highly efficient electrochemistry system was important for construct simple and sensitive biosensors, which was crucial in clinical diagnosis and therapy. In this work, a novel electrochemistry probe N,N'-di (1-hydroxyethyl dimethylaminoethyl) perylene diimide (HDPDI) with positive charges was reported to show two-electron redox behavior in neutral phosphate buffer solution between 0 and -1.0 V. And K2S2O8 in solution could significantly increase the reduction current of HDPDI at -0.29 V, which was interpreted with cyclic catalysis mechanism of K2S2O8. Moreover, HDPDI as electrochemical probe and K2S2O8 as signal enhancer was used to design aptasensors for protein detection. Thrombin was used as target model protein. Thiolate ssDNA with thrombin-binding sequence was immobilized on gold electrode to selectively capture thrombin and adsorb HDPDI. The thiolate ssDNA without binding with thrombin was with random coil structure and could adsorb HDPDI through electrostatic attraction interaction. However, the thiolate ssDNA binding with thrombin became G-quadruplex structure and hardly adsorbed HDPDI. Thus, with increasing the concentration of thrombin, the current signal stepwisely decreased and was taken as detection signal. Compared with other aptasensors based on electrochemistry molecules without signal enhancer, the proposed aptasensors exhibited wider linear response for thrombin between 1 pg mL-1 and 100 ng mL-1 with lower detection limit 0.13 pg mL-1. In addition, the proposed aptasensor showed good feasibility in human serum samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , G-Quadruplexes , Perylene , Humans , Thrombin/chemistry , Aptamers, Nucleotide/chemistry , Gold/chemistry , DNA, Single-Stranded , Electrochemical Techniques , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...